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Abstract
Current and planned space missions will produce aboveground biomass density data prod-
ucts at varying spatial resolution. Calibration and validation of these data products is criti-
cally dependent on the existence of field estimates of aboveground biomass and coincident 
remote sensing data from airborne or terrestrial lidar. There are few places that meet these 
requirements, and they are mostly in the northern hemisphere and temperate zone. Here we 
summarize the potential for low-altitude drones to produce new observations in support of 
mission science. We describe technical requirements for producing high-quality measure-
ments from autonomous platforms and highlight differences among commercially avail-
able laser scanners and drone aircraft. We then describe a case study using a heavy-lift 
autonomous helicopter in a temperate mountain forest in the southern Czech Republic in 
support of calibration and validation activities for the NASA Global Ecosystem Dynamics 
Investigation. Low-altitude flight using drones enables the collection of ultra-high-density 
point clouds using wider laser scan angles than have been possible from traditional air-
borne platforms. These measurements can be precise and accurate and can achieve meas-
urement densities of thousands of points ·  m−2. Analysis of surface elevation measurements 
on a heterogeneous target observed 51 days apart indicates that the realized range accuracy 
is 2.4 cm. The single-date precision is 2.1–4.5 cm. These estimates are net of all process-
ing artifacts and geolocation errors under fully autonomous flight. The 3D model produced 
by these data can clearly resolve branch and stem structure that is comparable to terrestrial 
laser scans and can be acquired rapidly over large landscapes at a fraction of the cost of 
traditional airborne laser scanning.
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1 Introduction

We are on the cusp of a golden age in satellite remote sensing. Current and forthcom-
ing missions will produce measurements  of the land surface with unprecedented spatial 
and temporal detail. The use of the International Space Station (ISS) as a platform for 
coordinated Earth observation will generate remote sensing data over diurnal timescales, 
including characterizations of canopy temperature, solar-induced fluorescence, and ecosys-
tem structure (Stavros et al. 2017). The data products from these missions will enable new 
insight into the biological underpinnings of the Earth system and help to constrain uncer-
tainties in the global distribution of aboveground stocks and fluxes of carbon and water.

Three missions will quantify aboveground biomass density (AGBD). The Global Eco-
system Dynamics Investigation (GEDI) is producing globally representative measure-
ments of vertical height profiles (waveforms) and estimates of aboveground carbon stocks 
(Dubayah et  al. 2014; Hancock et  al. 2019). Two additional efforts are the NASA-ISRO 
Synthetic Aperture Radar (NISAR) and ESA P-band radar (BIOMASS), both of which are 
free-flying satellites that will produce AGBD data products (Scipal et  al. 2010; NISAR 
Mission Science Handbook 2018).

Calibration and validation of these data products is critically dependent on the existence 
of globally representative field estimates of AGBD and coincident remote sensing meas-
urements of vegetation structure (Duncanson et  al. 2019). The best sources of remotely 
sensed vegetation structure are high-density airborne or terrestrial laser scanning (ALS and 
TLS, respectively), but there are relatively few places with field estimates of AGBD and 
coincident remote sensing data, and they are disproportionately in the northern hemisphere 
and temperate zone. In contrast, the tropics contain substantial aboveground forest carbon 
stocks (Pan et al. 2011), but are not as well represented in existing field inventories used for 
calibration and validation, especially those of Africa and Asia.

The use of traditional aircraft with lidar instruments to acquire remote sensing measure-
ments of vegetation structure that is coincident with field estimates of AGBD is cost-pro-
hibitive for a large number of remote locations, many of which are far from major centers. 
It would also be inefficient, because the critical areas necessary for calibration and valida-
tion activities are the plots and surrounding landscapes < 10 km2 (Held et al. 2015).

1.1  New Opportunities

An alternative to traditional airborne laser scanning is to obtain these data using drones. 
Lidar from low-altitude drones is fundamentally similar to traditional airborne laser scan-
ning. Sensors record the return-time of emitted laser pulses and combine this information 
with location and attitude to project recorded laser pulses in a 3D coordinate system (Lef-
sky et  al. 2002). But the methods of data collection from low-altitude flight create new 
opportunities to characterize the three-dimensional structure of forests in ways that have 
not been possible until now.

There are several important differences. Low-altitude flight at relatively slow speeds can 
produce point densities that are orders of magnitude greater than traditional airborne laser 
scanning. Coupled with wide scan angles, these large point densities can resolve individual 
tree and branch structure and are similar to TLS. Low-altitude flight reduces the impact 
of GPS and pointing uncertainties that accumulate with the distance between sensors and 
the terrain or vegetation surface, making wide-angle scans possible. Because drone flight 
is more firmly under the control of the investigator and about one order of magnitude less 
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costly than traditional airborne laser scanning, flight plans can be developed to collect 
high-density measurements in novel ways that enable hypothesis testing, or evaluate the 
impact of collection scenarios on remote sensing measurements.

Below we summarize the potential for drones to produce new observations in support 
of mission science. In the first section, we describe technical considerations for produc-
ing high-quality measurements from autonomous platforms, and we highlight differences 
among commercially available laser scanners and drone aircraft. We next describe a case 
study using the Brown Platform for Autonomous Remote Sensing (BPAR, Fig. 1) in a tem-
perate mountain forest in the southern Czech Republic in support of calibration and vali-
dation activities for GEDI. We demonstrate that drone measurements can facilitate large-
area mapping and the high-quality measurements necessary for validation of mission data 
products. We conclude by addressing three areas where drone remote sensing is likely to 
make significant contributions to our understanding of the land surface and to meeting the 
calibration and validation needs of current and forthcoming space missions.

2  Technical Considerations for Drone Remote Sensing

Generating high-quality remote sensing data from an unmanned platform requires a stable 
aircraft with a robust flight control system, a survey-grade GPS and inertial motion unit 
(GPS-IMU), vibration isolation of sensor hardware, and post-processing using differential 
correction. In general, vibration isolation and stability are easier to control in heavier air-
craft than lighter ones. Larger aircraft can resist wind and thermal activity, which allows 
them to operate under a wider range of conditions than smaller aircraft. Long flight dura-
tions are necessary to map areas larger than a few ha (Brede et al. 2017).

2.1  Light‑Weight Airborne Laser Scanners

In the last few years, a number of commercially available, light-weight laser scanners have 
been developed that are suitable for drone-based flight operations (Table 1). Some of these 
sensors are developed by RIEGL Laser Measurement Systems, the Austrian manufacturer 
of survey-grade lidar instruments. Others were originally designed for automotive or indus-
trial use, but have been repurposed for drone flight. These sensors differ in weight, range 
accuracy, beam divergence (and therefore footprint size and shape), wavelength, the maxi-
mum measurement rate, the number of returns recorded, the effective measurement range 
(EMR), and scan angle range (Table 1). The RIEGL sensors are heavier, more accurate, 
produce higher point densities, and are the only lightweight sensors capable of record-
ing > 3 returns per emitted laser pulse. They also have the narrowest beam divergences and 
therefore result in the smallest footprints at a given flight altitude. For example, the RIEGL 
VUX-1 has a 0.5 mrad beam divergence, which produces a 5 cm circular footprint at a dis-
tance of 100 m. Contrast this with the Velodyne HDL-32, an industrial laser scanner repur-
posed for drone flight, which has a 3 × 1.5 mrad beam divergence (i.e., the beam diver-
gence is different in the across-beam dimensions). This produces a rectangular footprint of 
30 × 15 cm at a distance of 100 m.
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2.2  Precision and Accuracy

The precision and accuracy of all airborne laser scans is influenced by the stabil-
ity of the sensor during flight, knowledge of the sensor attitude, typically from a 

Fig. 1  The Aeroscout GmbH B100 heavy-lift autonomous helicopter. Components are distinguished in 
color: flight control system hardware (orange), engine (blue), dual GPS antennas (purple), RIEGL VUX-1 
laser scanner (green), GPS-IMU and electrical supply (red). The main rotor is 3.2 m in length, and the air-
craft weighs 77 kg with maximum payload
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survey-grade GPS-IMU, and flight altitude. Because GPS and pointing errors accu-
mulate with distance from the target, low-altitude flight can partially compensate for 
GPS-IMU quality, although a poor GPS-IMU can result in data that are not useful (but 
see Sect. 3.2 on computer vision). Stated differently, the same GPS-IMU will result in 
better horizontal placement of projected laser pulses at a lower flight altitude than a 
higher one. For a sensor at altitude A , the horizontal position of a projected laser pulse 
along a single axis can be calculated as:

For the same value of A , a given � , which denotes error in the scan angle measure-
ment, has a larger impact on the horizontal position when the scan angle is larger. For 
a given scan angle and � , error in the horizontal position is proportional to A . By oper-
ating at low altitude, drone flight minimizes error in horizontal position of projected 
laser pulses.

The best ranging accuracies reported for laser scanners are from terrestrial sensors, 
which are on the order of one to a few mm at distances of 100 m (Calders et al. 2017; 
Disney et al. 2018). No airborne sensors currently approach this degree of performance 
during flight operations (Table 1).

2.3  Footprint Size

The interpretation of ranging accuracies becomes challenging inside canopies due to differ-
ences in beam divergence, distance from the target, and consequently, footprint size. Beam 
divergence is the rate of increase in beam size with distance from the sensor. Just as a 
flashlight makes a larger circle on a wall from a greater distance, laser scans produce larger 
footprints when the sensor is farther away from a target reflective surface. The combination 
of footprint size, distance from the target, and target reflectivity fundamentally constrains 
the spatial resolving capacity of any laser scanner (Lichti and Jamtsho 2006; Milenković 
et al. 2018). Commercial TLS instruments produce footprint sizes in the 2–5 cm range at 
100 m (Disney et al. 2018), allowing them to resolve small stems and branches. The RIEGL 
VUX-1 produces a footprint size of 5 cm at 100 m from the target. Other laser scanners that 
are being operated from low-altitude drones have variable beam divergences and a wide 
range of footprint sizes (Table 1). Traditional airborne laser scanners produce footprints 
in the 15–30 cm range from flight altitudes in the 500–1000 m range. Thus, airborne laser 
scanners that exhibit similar fundamental ranging accuracies may not be equally amenable 
to detection of branch and stem structure within canopies. This is because resolving fine 
structures requires high accuracy, high density, and small footprints (Disney et al. 2018). 
Because footprint size is a function of beam divergence and distance from the target, laser 
scanners operated from low-altitude produce footprints that are relatively more variable in 
size along the beam path. For example, at a flight altitude of 100 m over a 50 m canopy, 
footprint size for the VUX-1 is 2.5 cm on the canopy top and 5 cm on the ground. This is 
an absolute difference of 2.5 cm, but the ground footprints are twice as large. At 500 m 
altitude, the VUX-1 produces 22.5 cm footprints on a 50-m canopy and 25 cm footprints 
at ground level. The absolute difference is still 2.5 cm, but the ground footprints are now 
only 11% larger. This indicates that the potential for footprints to contain qualitatively dif-
ferent information along the beam path, such as individual leaf and small branch returns, is 
greater when the distance to the target is less.

(1)Horizontal position = A × tan (scan angle ± �)
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2.4  Effective Measurement Range

EMR is the maximum distance over which a laser scanner can record a reflected laser pulse. 
The EMR depends on the size and reflectivity of the target and energy per emitted laser 
pulse (pulse repetition rate, PRR). For example, the EMR of the RIEGL VUX-1 at a PRR 
of 300 kHz is 230 m for a target of 20% reflectance, or 400 m for a target of 60% reflectance. 
The wavelength of the VUX-1 is 1550 nm. The reflectance of green vegetation is about 10% at 
1550 nm, and woody vegetation has a reflectance of about 30% at 1550 nm (Asner and Heide-
brecht 2002). The EMR of the VUX-1 increases to 400 and 660 m for targets of 20% and 60% 
reflectance, respectively, at a PRR of 100 kHz because there is more energy per emitted laser 
pulse. Velodyne does not report EMR for targets of varying reflectivity, but the reported EMR 
is 100 m. Lin et al. (2013) report an EMR for the Ibeo LUX lidar sensor of 100 m. These 
considerations are important, because the beam path must be < EMR to guarantee that returns 
can be recorded. At a scan angle of 60°, the beam path is two times the sensor altitude. A good 
rule of thumb is that flight altitude should not exceed 0.5 × EMR when scan angles up to 60° 
are employed.

2.5  Drone Platforms

Just as the number of commercially available laser scanners has rapidly increased over the 
last few years, so too have the number of drone aircraft capable of carrying these instruments. 
These platforms range in size from battery-powered multirotor aircraft that weigh a few kg and 
can carry a small laser scanner for a few minutes, like those developed by the company Phoe-
nix Lidar Systems, to heavy-lift gasoline powered helicopters like the Aeroscout GmbH B330 
that can carry a 50-kg payload for three hours. Rotor-powered aircraft of intermediate flight 
duration and payload capacity include the electric powered Vapor 55 helicopter developed 
by Pulse Aerospace. This traditional helicopter can carry a 5-kg payload for 1 h. The RIEGL 
RiCOPTER is a multirotor developed by RIEGL Laser Measurement Systems to carry the 
VUX-line scanners. It has a 6.5-kg payload capacity and a maximum flight duration of 0.5 h. 
In general, fixed-wing aircraft have longer flight durations than helicopters or multirotor air-
craft of the same size. For example, the Edinburgh-based company Carbomap is developing a 
long-endurance fixed-wing platform that will rival the large-area mapping ability of traditional 
airborne laser scanning from crewed aircraft. The long flight duration of fixed-wing aircraft 
comes at the cost of sacrificing control over flight speed.

Combinations of laser scanners, GPS-IMU, and aircraft dictate the capabilities and meas-
urement quality that can be expected from drone-based laser scans. Smaller aircraft and sen-
sors are nimble and can be deployed easily and within the scope of existing regulations. Larger 
aircraft may require explicit permission from national departments of civil aviation and a pro-
fessional team of pilots and payload operators. Some aircraft and laser scanners can be subject 
to export control regulations. Larger aircraft can carry higher-quality laser scanners and GPS-
IMU. The selection of an aircraft, laser scanner, and GPS-IMU hardware should therefore 
consider measurement requirements, including point density, accuracy, the required extent of 
areal coverage, and flight time.
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3  Brown Platform for Autonomous Remote Sensing

The Brown Platform for Autonomous Remote Sensing is a suite of sensors carried by 
a heavy-lift helicopter developed by the Swiss company Aeroscout GmbH. The BPAR 
sensor package includes imaging spectrometers that cover the 400–2500  nm region 
of the solar spectrum at varying resolution and sampling intervals, a 24.3 MP digital 
camera, a RIEGL VUX-1 laser scanner (Table 1), and an Oxford Technical Solutions 
(OXTS) Survey +2 GPS-IMU. The VUX-1 is a 1550 nm laser capable of recording up 
to 500,000 measurements s−1. The sensor records the return time of emitted laser pulses 
and processes the recorded waveform to identify discrete reflective surfaces (returns) 
within every emitted laser pulse. The OXTS GPS-IMU is a survey-grade instrument 
designed for airborne mapping applications. The nominal roll and pitch accuracy are 
0.03°, and the nominal heading accuracy in dual-antenna mode is 0.05°. In our con-
figuration, the instrument records at 250 Hz and has access to the GPS and GLONASS 
networks. During flight operations, we collect an independent global navigation sat-
ellite system (GNSS) data stream on the ground using a Novel FlexPak 6 Triple Fre-
quency + L-band GNSS receiver. This data stream is used to differentially correct the 
OXTS GPS-IMU measurements in post-processing.

The aircraft and sensors are operated by three people. A certified pilot in command 
(PIC) is responsible for takeoff and landing under manual control. The PIC has access 
to a forward-facing video camera that is mounted on the front of the aircraft. The PIC 
can operate the aircraft using hand controls by line-of-sight or using a video-feed to the 
forward-facing camera. Upon reaching altitude, the PIC communicates with the ground-
station pilot (GSP) by radio. The GSP interacts with the flight control system over an 
868 MHz data link that provides information about location, altitude, speed, heading, 
engine performance, and exhaust characteristics. The GSP is responsible for engaging 
the flight control system to initiate autonomous flight, after which the aircraft will visit 
a set of locations in a specified order at a specified altitude and speed under autonomous 
control. During the flight, a payload operator (PO) communicates with onboard sen-
sors over a 2.4 GHz data link to monitor the data collection in real time. The PO can 
communicate with the PIC and GSP to request changes to the flight plan when needed. 
When the mission is complete, the aircraft will return to a specified location and hover, 
awaiting further instructions from the PIC.

The aircraft used during campaigns in the Czech Republic was the Aeroscout B100, 
which is operated with rigorous failsafe mechanisms and multiple levels of redundancy. 
With the exception of the flight crew, no people are within 100 feet (30.5 m) of the air-
craft during flight operations, and we design flight plans that minimize risk to people 
and property. When a road or trail crossing is unavoidable, we cross at a right angle and 
visually confirm that there are no people beneath the aircraft trajectory. The aircraft has 
a redundant flight control system and electrical supply. We program instructions into the 
flight control system so that the aircraft will safely land in the event that communication 
is severed. If this occurs, the aircraft will hover at a specified location for 10 min, or 
until remaining fuel falls below a critical level, then land autonomously. The engine is 
gasoline powered and can support an 18-kg payload for 1.5 h at sea level. The maximum 
takeoff weight is 77  kg, and the aircraft operates under certificate of the Swiss Civil 
Aviation Authority (BAZL).
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3.1  Flight Campaign in the Czech Republic

We collected airborne laser scans using BPAR over a temperate mountain forest in the 
southern Czech Republic. The site contains the Zofin Forest Dynamics Plot, which is a 
25 ha permanent-inventory plot in which all free-standing woody plants > 1 cm diameter 
at breast height (DBH) have been mapped and monitored since 2012 (Anderson-Teixeira 
et al. 2015; Janík et al. 2016). This forest is dominated by old-growth European beech 
(Fagus sylvatica) and Norway spruce (Picea abies), with occasional silver fir (Abies 
alba). The surrounding landscape has been actively managed for Norway spruce pro-
duction and includes planted and clearcut areas.

The data were collected in two sets of orthogonal flight lines that we repeated 51 days 
apart. The first flights commenced on April 16, 2018. The second flights started on June 6, 
2018. These dates were selected to produce observations under leaf-off and leaf-on condi-
tions with little to no change in woody structure. The April campaign was completed in 
six flights over two consecutive days. The June campaign required six flights over three 
consecutive days. The total flight time for each campaign was about 5 h. For each cam-
paign, there were 45 flight lines in the NW–SE direction and 45 flight lines in the NE-SW 
direction. The purpose of using two sets of flight lines over the same area was to ensure 
dense point coverage of stem and branch structure. The nominal flight altitude was 110 m 
aboveground, and the nominal flight speed was 6 m ·  s−1. During the autonomous portion 
of the flight, the flight control system maintained stable control of the aircraft and sensors. 
For example, during a representative flight line the realized speed was 6 m ·  s−1 (stand-
ard deviation, SD = 0.06 m  s−1). The standard deviation in the pitch, roll, and heading 
axes was 0.3°, 0.6°, and 0.8°, respectively. The total areas covered were 1.72 and 1.60 km2, 
respectively (Fig. 2).

Measurement density is large. The leaf-off point cloud contains 4,811,370,798 unique 
returns, corresponding to a mean density of 2801 · m−2. The leaf-on point cloud, acquired 
over the same location 51 days later, contains 3,465,943,773 unique returns. This is a mean 
density of 2166 · m−2. Within the primary area of interest, point density exceeds the land-
scape mean in forested areas, because the entire landscape includes edges with reduced 
overlap among flight lines, and open forest with fewer higher-order returns (Table 2). For 
example, a representative 2.25  ha area dominated by old-growth F. sylvatica contains 
97,615,242 points under leaf-off conditions, corresponding to a density of 4438 · m−2, and 
67,769,379 points under leaf-on conditions. The leaf-on density is 3012 · m−2.

3.2  Precision and Accuracy of Airborne Laser Scans Under Autonomous Flight

We quantified range precision and  accuracy for the RIEGL VUX-1 during autonomous 
flight by extracting points along a 12 m profile on the stem of a fallen dead tree that was 
apparent in the high-density point cloud (Figs.  3, 4). Linear regressions under leaf-off 
and leaf-on conditions had very high coefficients of determination and similar slope and 
intercept terms (leaf off: b0 = 745.0 m, b1 = − 4.51 cm, r2 = 0.930, residual standard error 
(RSE) = 4.51 cm; leaf on: b0 = 745.0 m, b1 = − 4.65 cm, r2 = 0.984, RSE = 2.05 cm). The 
mean difference between the predicted values is 2.4 cm, and ranges from 3.2 to 1.7 cm. 
From this analysis, we conclude that the realized ranging accuracy in the post-processed 
point cloud has a standard deviation < 5 cm. We emphasize that this is the ranging accuracy 
net of all processing artifacts and geolocation errors under fully autonomous flight on a 
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Fig. 2  Operational drone lidar in support of mission science. We collected these data using the Brown Plat-
form for Autonomous Remote Sensing in a temperate beech forest in the southern Czech Republic in April, 
2018. Colors indicate elevation (m), and the tallest trees are about 40 m. The white box is 1 by 1 km and 
equal in size to the GEDI L4B aboveground biomass density data product. White dots are simulated GEDI 
L4A ground tracks, drawn to scale (22 m footprint diameter, 60 m along-track spacing, 600 m across-track 
spacing, track inclination is arbitrary). These data were collected in five flight hours using 90 flight lines at 
90° angles. Mean point density is 2801 points ·  m−2. Collecting lidar data at 100 points ·  m−2 takes about 
6 min ·  km−2 using this platform

Table 2  The distribution of return numbers (percentages) from airborne laser scans using a low-altitude 
drone under leaf-off and leaf-on conditions 51 days apart

The measurements were collected using the Brown Platform for Autonomous Remote Sensing and contrast 
a closed-canopy old-growth forest dominated by European beech (F. sylvatica) with an open area domi-
nated by Norway spruce (P. abies) and silver fir (A. alba). Higher-order returns occur more frequently in 
closed-canopy forest due to complex vertical structure. The presence of leaf area reduces return numbers > 3

First Second Third Fourth ≥ Fifth

Closed forest leaf off 43.0 31.1 17.2 6.8 1.9
Closed forest leaf on 63.7 27.8 7.1 1.2 0.2
Open forest leaf off 83.2 13.6 2.8 0.4 0.0
Open forest leaf on 86.8 11.5 1.5 0.2 0.0
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heterogeneous target (the fallen dead tree) and that this number is about one order of mag-
nitude greater (worse) than the ranging accuracies reported for TLS (Calders et al. 2017; 
Disney et al. 2018). It is of a similar or smaller magnitude to ranging accuracies reported 
for traditional airborne laser scanning (Asner et al. 2007; Kellner et al. 2009). 

Recent developments in computer vision may be able to improve the precision and accu-
racy of airborne laser scans, potentially compensating for low-quality GPS-IMU measure-
ments deployed on aircraft with limited payload capacity and increasing the performance 
of survey-grade instruments. Simultaneous localization and mapping (SLAM) algorithms 
are used to facilitate autonomous navigation in unstructured environments lacking GPS 

Fig. 3  A high-density digital surface model from drone lidar resolves recently fallen trees. The image is a 
5 cm digital surface model and colors indicate sun-shaded intensity. Fallen trees are labeled in red. Tip-up 
mounds are orange. The white scale bar in the main image is 25 m

Fig. 4  Comparison of lidar sur-
face elevation profiles from April 
16, 2018 (green points and line) 
and June 6, 2018 (orange points 
and line). The profile is 2 cm 
wide and was extracted from the 
stem of a fallen tree (labeled A 
in Fig. 3). The mean difference 
in elevation between these lines 
is 2.4 cm. The residual standard 
error is 4.5 cm in April and 
2.1 cm in June
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(Aouf et al. 2009; Qiang and Xin-sheng 2013). These methods work on 2D video streams 
from moving vehicles to solve the 3D geometry of the local environment. Although nor-
mally used for real-time navigation, this information provides a trajectory independent of 
the GPS-IMU that can constrain the position and pointing angles of the sensor. In a pio-
neering study, Wallace et al. (2012) collected airborne lidar from a multirotor aircraft using 
an Ibeo LUX laser scanner and low-quality GPS-IMU (Table  1). The horizontal RMSE 
was 0.61 m when data were processed using only the GPS-IMU. However, a high-defini-
tion video stream was collected at 30 frames per second during flight and used to produce 
an independent trajectory by applying the scale-invariant feature transform (SIFT) algo-
rithm to the sequence of 2D images (Lowe 1999). The authors integrated the GPS-IMU 
and computer vision trajectories using a Kalman filter. This reduced the horizontal RMSE 
to 0.34 m. Thus, post-processing using computer vision approximately halved the horizon-
tal uncertainty. No study has systematically evaluated the potential of this approach for 
improving the horizontal accuracy of airborne laser scans, but doing so is a high research 
priority.

4  Promising Applications of Drone Remote Sensing

4.1  Individual Tree Segmentation

One of the most promising applications of drone remote sensing is the segmentation of 
individual stems using methods originally developed for terrestrial laser scanning (Fig. 5). 
Applying these methods to ultra-high-density point clouds that contain millions of trees is 
a formidable computational problem (Raumonen et al. 2013). Overcoming this challenge 
would beat back a series of pervasive limitations to quantifying AGBD using remote sens-
ing and create new opportunities for demographic analysis of tree populations using much 
larger samples than are currently available (Kellner and Hubbell 2017). The essential prob-
lem is that no remote sensing method or conventional forest inventory directly measures 
mass. The most commonly measured variables are stem diameter and height. These quan-
tities are used to predict AGB using allometric scaling equations, which are themselves 
developed from a relatively small number of trees that have been measured, harvested, and 
weighed (Jenkins et al. 2003; Muukkonen 2007; Chave et al. 2014). The samples used to 
build these scaling equations are nonrandom and almost certainly biased in favor of trees 
with idealized forms (Clark and Kellner 2012).

The only way to evaluate the accuracy of these scaling equations is to compare predicted 
to measured AGB. The few studies that have undertaken this arduous task have shown that 
the equations are biased, especially among the largest trees (Calders et al. 2015; Gonzalez 
de Tanago et al. 2018). One way to lessen the impact of this problem is to compute wood 
volume using very high density laser scans (Raumonen et  al. 2013; Calders et  al. 2015; 
Gonzalez de Tanago et  al. 2018). Multiplying wood volume by wood  density results in 
an estimate of AGB that is independent of the allometries. Quantitative structure models 
(QSMs) segment individual trees within high-density point clouds and fit large numbers 
of cylinders to individual tree objects (Raumonen et al. 2013; Åkerblom et al. 2015). The 
accumulated volume of these cylinders is an estimate of tree-level wood volume. Three 
studies have compared these numbers to harvested trees. They found that wood volume and 
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AGB quantified using QSMs are unbiased (Calders et al. 2015; Gonzalez de Tanago et al. 
2018; Takoudjou et al. 2018).

Automated segmentation methods therefore hold great promise, because they will 
improve the quality of existing scaling equations and are likely to eventually replace them. 
The most important limitation to this approach is that it remains dependent on intensively 
collected field data from TLS and is therefore difficult to apply throughout large areas 
needed for the calibration and validation of data products from current and forthcoming 
space missions. For example, the GEDI L4B gridded AGBD data product has a resolution 
of 1 km2 (Patterson et al. 2019). Low-altitude drone flight may be able to meet this chal-
lenge by producing high-density point clouds throughout areas of 1–10 km2.

The high-density point clouds collected in the southern Czech Republic resolve indi-
vidual stem and branch structure (Figs.  5, 6). It is clear that measurements from wide 
scan angles are disproportionately important sources of information about stem struc-
ture, a finding also reported by Brede et  al. (2017). This is apparent by examining the 

Fig. 5  A single European beech (F. sylvatica) in the high-density point cloud acquired by the Brown 
Platform for Autonomous Remote Sensing. a All returns. b Only returns with 16-bit reflectance inten-
sity > 45,000. The intensity filter removes leaf material and shows branch and stem structure necessary for 
automated segmentation
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Fig. 6  Stem and branch structure from high-density lidar acquired by a low-altitude drone. The point den-
sity in this scene is 3981 · m−2. Scale varies from this perspective. The length of the white bar is 30 m

Fig. 7  The impact of scan angle on measurements of stem and branch structure. The area is the same as 
Fig. 6. a Only points acquired from absolute scan angles < 10°. b Only points acquired from absolute scan 
angles > 30°. Most returns from stem and branch positions are from wide scan angles. Scale varies from this 
perspective. The length of the white bar is 30 m



Surveys in Geophysics 

1 3

subset of old-growth forest in Fig.  7. The left panel  contains only points from abso-
lute scan angles < 10°, which is comparable to traditional airborne laser scanning, though 
much more densely sampled. The panel on the right shows the same location, but contains 
only points from absolute scan angles > 30°. Stem structure is more clearly resolved from 
measurements > 30° than from measurements < 10°. To determine the potential for auto-
mated stem segmentation using these data, we applied a low-intensity filter to remove non-
wood returns. This indicates that branches are resolvable using measurements from low-
altitude drone flight (Fig. 5). 

4.2  High‑Frequency Observation

Because drone flight is more firmly under the control of the investigator and much less 
costly than traditional airborne laser scanning, flight plans can be developed to collect 
high-density measurements in novel ways that enable hypothesis testing or evaluate the 
impact of collection scenarios on remote sensing data. There is considerable debate over 
the role of leaf phenology, age, sensor and atmospheric artifacts in Amazon greening 
apparent in broadband satellite data (Saleska et al. 2007; Samanta et al. 2010; Morton et al. 
2014; Tang and Dubayah 2017). High-frequency observations from drones could serve as 
an important source of information in this debate, for example, by observing short-term 
changes in leaf area and condition. The data we collected in the southern Czech Republic 
were designed in part to determine the impact of leaf area on simulated GEDI waveforms 
in the absence of changes in woody structure. By collecting measurements 51 days apart, 
we are able to observe changes associated with leaf flushing and phenology that are inde-
pendent of woody structure.

Comparing measurements from leaf-off and leaf-on conditions in the Czech Republic 
demonstrates that the difference in point density is due to a reduction in the number of 
higher-order returns in the presence of leaf area (Table  2). For example, the number of 
first returns under leaf-off conditions in the 2.25 ha forested area was 41,822,033, which 
is a mean density of 1859 · m−2. Under leaf-on conditions, the number of first returns was 
43,132,311 or 1917 ·  m−2. The total point density and distribution of return numbers for the 
2.25 ha forested area can be contrasted with an open, recently disturbed location of 0.75 ha, 
some of which is illustrated in Fig. 3. This location contains 14,620,517 first returns under 
leaf-off conditions, and 17,879,244 first returns under leaf-on conditions, corresponding 
to densities of 1949 · m−2 and 2384 · m−2, respectively. The distribution of return numbers 
is more strongly skewed toward first returns under leaf-on conditions (Table 2). Another 
opportunity is observing short-term changes in condition, for example due to leaf wilting. 
These observations could be made by conducing repeated drone flights over diurnal time 
scales.

4.3  Increasing the Representation of Ground‑Based Field Inventories in Support 
of Mission Science

The Committee on Earth Observation Satellites (CEOS) is responsible for coordinat-
ing non-military Earth observations among national and international space agencies and 
other members (Duncanson et al. 2019). In concert with the Group on Earth Observations 
(GEO), the CEOS Working Group on Calibration and Validation (WGCV) Land Product 
Validation (LPV) subgroup has developed a forthcoming protocol focused on recommen-
dations for validation of satellite AGBD data products. These recommendations include a 
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call for increasing the number and quality of validation sites, highlighting the importance 
of permanent field plots (CEOS Strategy for Carbon Observations from Space 2014; CEOS 
Working Group on Calibration and Validation 2017). These recommendations recognize 
the critical role of ground-based field-inventory data in supporting the calibration and vali-
dation needs of current and forthcoming generations of land surface remote sensing.

Unfortunately, there are currently few locations in the world with large permanent-
inventory plots suitable for calibration and validation of space mission data products. Even 
when field data exist, these inventories have usually not been professionally surveyed in 
an absolute coordinate system, making it difficult to align field data with airborne or satel-
lite data products. Producing stem maps in large inventory plots is time-consuming and 
cannot be completed rapidly. These problems introduce a spatial and temporal mismatch 
between the field inventories and remotely sensed data (Réjou-Méchain et al. 2015). Other 
issues include changing points of measurement on individual tree stems over time due to 
the development of buttresses or other irregularities and inconsistent application of meas-
urement protocols (Clark 2002; Metcalf et al. 2009).

All of these problems could be overcome by an operational framework to segment indi-
vidual stems using ultra-high-density laser scanning from TLS and drones (Calders et al. 
2015; Brede et al. 2017; Gonzalez de Tanago et al. 2018; Disney et al. 2018). Because the 
stem map can be derived directly from lidar data, spatial and temporal sources of uncer-
tainty between field measurements and remote sensing are eliminated. Segmentation algo-
rithms can be clearly described and placed in the public domain (Raumonen et al. 2013; 
Trochta et al. 2017). Uncertainties can be rigorously quantified and propagated, and algo-
rithms can be applied consistently, ensuring that all data can be judged and evaluated by the 
same standard. This information could be rapidly generated using a coordinated campaign 
involving terrestrial and drone-based sensors over existing field inventories. For example, 
the Forest Global Earth Observatory plot network contains the largest permanent plots in 
the world, typically 25–50  ha in size. This network represents 66 sites in 27 countries, 
including 6 million individual trees and 10,000 species (Anderson-Teixeira et al. 2015).

Sampling these plots within regions of 1–10 km2 would provide the measurements nec-
essary for calibration and validation of space mission data products. Acquisition of these 
data is possible using a heavy-lift or long-duration drone at a fraction of the cost of tradi-
tional airborne surveys. What would it take to accomplish this task? Using our experiences 
in the southern Czech Republic as a guide, generating 5000 points · m−2 requires about 5 
flight hours ·  km−2. If lower point densities are acceptable, 50 points · m−2 can be achieved 
in about 6 min · km−2.

5  Conclusions

Low-altitude flight using drones enables the collection of ultra-high-density point clouds 
using wider laser scan angles than have been possible from traditional airborne platforms. 
These measurements can be precise and accurate and can achieve measurement densities of 
thousands of points m−2. The 3D model produced by these data can clearly resolve branch 
and stem structure that is comparable to TLS and can be acquired rapidly over large land-
scapes at a fraction of the cost of traditional airborne laser scanning. Drone remote sensing 
is not a replacement for traditional airborne platforms or TLS. It is a tool for a different 
job. Drone-based flight operations provide flexibility and the potential to take advantage of 
unexpected opportunities. Drones may enable access to locations where traditional flight 
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operations are challenging, either because sites are remote or because permissions are dif-
ficult to secure. The diversity of lightweight laser scanners and drone platforms creates 
opportunities to collect focused measurements of relatively small areas at low cost and the 
ability to characterize large landscapes that rival the extent of traditional airborne laser 
scanning. Measurements from drones are qualitatively distinct from traditional airborne 
laser scanning, owing to the large point densities and wide scan angles that are made pos-
sible by low-altitude flight.

Critical to global validation of the AGBD data products being produced by current and 
forthcoming space missions is access to globally representative samples of airborne lidar 
that characterize the diversity of relationships between vertical forest structure and AGBD. 
Drone acquisitions can contribute to producing these calibration and validation data sets.
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